关于自然语言处理能力学习的问题,小编就整理了2个相关介绍自然语言处理能力学习的解答,让我们一起看看吧。
在自然语言处理可分为哪两种?自然语言处理又划分为两个部分:自然语言理解(Natural Language Understanding,NLU)和自然语言生成(Natural Language Generation,NLG)。
自然语言目前有两种处理方式具体如下:
1.基于规则来理解自然语言,即通过制定一些系列的规则来设计一个程序,然后通过这个程序来解决自然语言问题。输入是规则,输出是程序;
2.基于统计机器学习来理解自然语言,即用大量的数据通过机器学习算法来训练一个模型,然后通过这个模型来解决自然语言问题。输入是数据和想要的结果,输出是模型。
文本挖掘和自然语言处理的目的?自然语言处理和文本挖掘库主要用于以自然语言文本为对象的数据处理和建模。
1. nltk
类型:第三方库
描述:NLTK是一个Python自然语言处理工具,它用于对自然语言进行分类、解析和语义理解。目前已经有超过50种语料库和词汇资源。
2. pattern
类型:第三方库
描述:Pattern是一个网络数据挖掘Python工具包,提供了用于网络挖掘(如网络服务、网络爬虫等)、自然语言处理(如词性标注、情感分析等)、机器学习(如向量空间模型、分类模型等)、图形化的网络分析模型。
3. gensim
类型:第三方库
描述:Gensim是一个专业的主题模型(发掘文字中隐含主题的一种统计建模方法)Python工具包,用来提供可扩展统计语义、分析纯文本语义结构以及检索语义上相似的文档。
4. 结巴分词
类型:第三方库
描述:结巴分词是国内流行的Python文本处理工具包,分词模式分为三种模式:精确模式、全模式和搜索引擎模式,支持繁体分词、自定义词典等,是非常好的Python中文分词解决方案,可以实现分词、词典管理、关键字抽取、词性标注等。
5. SnowNLP
类型:第三方库
描述:SnowNLP是一个Python写的类库,可以方便的处理中文文本内容。该库是受到了TextBlob的启发而针对中文处理写的类库,和TextBlob不同的是这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。
到此,以上就是小编对于自然语言处理能力学习的问题就介绍到这了,希望介绍自然语言处理能力学习的2点解答对大家有用。